Degradation of the recalcitrant oil spill components anthracene and pyrene by a microbially driven Fenton reaction

Ramanan Sekar† and Thomas J. DiChristina∗,†

School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA

∗Corresponding author: School of Biology, Georgia Institute of Technology, 311 Ferst Drive, Georgia Tech, Atlanta, GA 30332, USA. Tel: 404-894-8419; Fax: 404-385-4440; E-mail: thomas.dichristina@biology.gatech.edu
†RS performed all experiments, developed part of the protocol and co-wrote the manuscript. TJD developed the concept and part of the protocol, co-analyzed all data and co-wrote the manuscript.

One sentence summary: This work demonstrates a newly developed microbially driven Fenton reaction (previously applied to degrade toxic chlorinated solvents and solvent stabilizers) that degrades the toxic oil spill components, pyrene and anthracene.

Editor: Hermann Heipieper

ABSTRACT

Oil spill components include a range of toxic saturated, aromatic and polar hydrocarbons, including pyrene and anthracene. Such contaminants harm natural ecosystems, adversely affect human health and negatively impact tourism and the fishing industries. Current physical, chemical and biological remediation technologies are often unable to completely remove recalcitrant oil spill components, which accumulate at levels greater than regulatory limits set by the Environmental Protection Agency. In the present study, a microbially driven Fenton reaction, previously shown to produce hydroxyl (HO•) radicals that degrade chlorinated solvents and associated solvent stabilizers, was also found to degrade source zone concentrations of the oil spill components, pyrene (10 μM) and anthracene (1 μM), at initial rates of 0.82 and 0.20 μM h⁻¹, respectively. The pyrene- and anthracene-degrading Fenton reaction was driven by the metal-reducing facultative anaerobe Shewanella oneidensis exposed to alternating aerobic and anaerobic conditions in the presence of Fe(III). Similar to the chlorinated solvent degradation system, the pyrene and anthracene degradation systems required neither the continual supply of exogenous H₂O₂ nor UV-induced Fe(III) reduction to regenerate Fe(II). The microbially driven Fenton reaction provides the foundation for the development of alternate ex situ and in situ oil and gas spill remediation technologies.

Keywords: oil spill degradation; microbial Fenton reaction; anthracene; pyrene; Shewanella oneidensis

INTRODUCTION

Environmental catastrophes such as the Deepwater Horizon (DWH) oil spill resulted in an inadvertent release of a range of saturated, aromatic and polar hydrocarbons, including n-alkanes, branched alkanes, monochromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) (Reddy et al. 2012). In the DWH oil spill, for example, approximately 10¹¹ g of net carbon were released in the form of C₁–C₉ hydrocarbon gases, including methane, ethane, propane and isobutene (Barron 2012) that adversely impacted marsh vegetation (Lin and Mendelssohn 2012), indigenous microbial and coral communities (White et al. 2012; Rodriguez et al. 2015) and aquatic and wildlife species (Barron 2012).

A variety of physical, chemical and biological methods are generally applied to contain oil spills and limit adverse effects on contaminated ecosystems. Physical methods include oil collection in containment booms with subsequent recovery by ships...
(Wang et al. 2014), while chemical methods include application of sorbents such as peat, sawdust and clays to adsorb lighter oils (Al-Majed, Adibayoyo and Hossain 2012; Owoseni et al. 2014), and wide-spread application of dispersants such as Corexit to accelerate the rate of oil dispersion. Chemical dispersants reduce the surface tension of the oil and the droplet sizes with subsequent increases in the available surface area for microbial growth and microbial oil degradation activity (Wang et al. 2016). Biological methods to remediate petroleum-contaminated sites include composting, bioventing and ex situ bioreactor treatment processes (Boopathy 2000).

Microbial hydrocarbon degradation is a major pathway for in situ removal of oil spill components from contaminated marine environments, particularly aerobic water columns and sediment surficial layers (Van Hamme, Singh and Ward 2003; Haritash and Kaushik 2009). Microbial oil degradation activity is affected by a variety of environmental factors, including the supply of carbon and energy sources such as acetate, benzoic and naphthenic acids, aliphatic and aromatic hydrocarbons, temperature, pH and dissolved oxygen concentration (Magot, Ol-livier and Patel 2000). Intense aerobic microbial metabolic activity within oil plumes depletes oxygen to below detection levels in the plume interior (Hazen et al. 2010) and oil biodegradation rates are subsequently limited by oxygen supply (Lu, Zhang and Fang 2011). Anaerobic biodegradation is the primary pathway for hydrocarbon degradation in oxygen-depleted plumes and in deep petroleum reservoirs where oxygen is depleted at the oil–water interface (Roling, Head and Larter 2003).

Anaerobic, oil-degrading microorganisms (Rueter et al. 1994; Kodama and Watanabe 2003) activate hydrocarbons for use as an electron donor via hydroxylisation, furfurate addition and methylation to yield more readily degradable intermediates (Ulrich, Beller and Edwards 2005). However, several oil and gas components such as the PAHs anthracene and pyrene are highly recalcitrant to microbial degradation pathways and thus may accumulate in contaminated sediments (Atlas and Bartha 2004; Anderson 2013; Hayworth et al. 2015; Zuijdgeest and Huettel 2012; Wang et al. 2014; Yin et al. 2015). Microbial PAH degradation rates are limited by PAH concentrations, temperature, pH and the composition of the indigenous microbial population (Smith, Schwab and Banks 2008; Horel, Mortazavi and Sobeky 2012).

Oil components such as pyrene and anthracene may also be oxidatively degraded by reactive oxygen species (ROS) such as hydroxyl (HO•) radicals with high oxidation potential (Andreozzi et al. 2004). Reactive oxygen species are produced during the oxidation of Fe(II) by dissolved oxygen in sediments not exposed to UV radiation (Murphy et al. 2016). These studies demonstrated that ROS may be generated with Fe(II) in pore waters or Fe(II) produced during the reduction of Fe(III) oxides by dissolved sulfides. Furthermore, hydrogen peroxide is not only detected in marine (Shaked, Harris and Klein-Kedem 2010), freshwater (Richard et al. 2007) and atmospheric environments (Lee, Heikes and O’Sullivan 2000), but has also recently been detected in subsurface aquifers (Yuan et al. 2017). HO• radicals are produced by the conventional (purely abiotic) Fenton reaction in which H₂O₂ reacts with ferrous iron (Fe(II)) to produce fer-ric iron (Fe(III)), hydroxyl ion (OH−), and hydroxyl radical (HO•) (Equation 1):

\[
\text{Fe(II)} + \text{H}_2\text{O}_2 \rightarrow \text{Fe(III)} + \text{OH}^- + \text{HO}^+ \tag{1}
\]

In addition to pyrene and anthracene, conventional Fenton reaction-generated HO• radicals oxidatively degrade a wide range of hazardous organic compounds, including polyethylene (Chow et al. 2016), chlorinated aliphatics and aromatics (Tyre, Watts and Miller 1991), dry-cleaning solvents (Top-udurti et al. 1994), pentachlorophenol (PCP) (Barbeni et al. 1987), tetrachloroethylene (PCE) (Jho, Singhal and Turner 2010), trichloroethylene (TCE) (Tsai et al. 2010), 1,1,2-trichloroethane (TCA) (Pignatello, Liu and Huston 1999), 1,4-dioxane (Son, Im and Zoh 2009; Vescovi, Coleman and Amal 2010; Zeng et al. 2017), petroleum hydrocarbons and the oil dispersant Corexit (Milioli, Freire and Cammarota 2003; Glover et al. 2014; Ojjin-naka, Osuji and Achugasim 2012; Zhang, Shao and Dong 2014). Petroleum hydrocarbon degradation is driven by the electro-chemical production of HO• radicals at optimal pH ranges of 2.5–3.5 (Zhang, Shao and Dong 2014). High concentrations of the reaction substrates Fe(II) and H₂O₂ must be continuously supplied in a conventional Fenton reaction system to drive the hydrocarbon degradation reaction at low pH (Lu et al. 2010; Ojinnaka, Osuji and Achugasim 2012; Wang et al. 2011). Continuous supply of H₂O₂ is often required in UV irradiation systems, often employed to drive photo-Fenton systems, since they are limited by UV light penetration (Kim and Vogelpohl 1998).

Microbially driven Fenton reactions that alternately produce the Fe(II) reagents H₂O₂ (via microbial O₂ respiration) and Fe(II) (via microbial Fe(III) reduction) do not require continual addition of Fenton substrates and UV-induced Fe(III) reduction to drive HO• radical production (Sekar and DiChristina 2014; Sekar, Shin and DiChristina 2016; Sekar, Taillefert and DiChristina 2016b). The Fe(III)-reducing facultative anaerobe Shewanella oneidensis was recently employed to drive the Fenton reaction for oxidative degradation of PCP (McKinzi and DiChristina 1999), 1,4-dioxane (Sekar and DiChristina 2014), TCE and perchloroethylene (PCE) (Sekar, Taillefert and DiChristina 2016) and lignocellulose (Sekar, Shin and DiChristina 2016a). In the S. oneidensis-driven Fenton reaction, batch liquid cultures were amended with Fe(III) and contaminant and subsequently exposed to alternating anaero-bic and aerobic conditions. Shewanella oneidensis produced Fe(II) via microbial Fe(III) reduction during the anaerobic period. During the aerobic period, S. oneidensis produced H₂O₂ via microbial O₂ respiration. During the transition from anaerobic-to-aerobic conditions, HO• radicals were produced through the Fenton reaction between Fe(II) and H₂O₂ that completely degraded the contaminants PCP, 1,4-dioxane, TCE and PCE at source zone concentrations (McKinzi and DiChristina 1999; Sekar and DiChristina 2014; Sekar, Taillefert and DiChristina 2016b). The main objective of the present study was to determine the ability of the microbially driven Fenton reaction system to degrade the oil spill components, anthracene and pyrene, supplied at source zone concentrations.

MATERIALS AND METHODS

Culture medium and chemical reagents

Shewanella oneidensis overnight cultures were grown aerobi-cally in Luria-Bertani medium (10 g/L tryptone, 5 g/L yeast extract and 10 g/L NaCl) at 30 °C (Sambrook, Friths and Man-natis 1989). Anthracene and pyrene degradation experiments were conducted in minimal salt solution (pH 7.0; 30 °C, Supplementary Table S1). The limited salts (LS) medium for the microbially driven Fenton reaction contained 10 mM lactate. Unless otherwise specified, all chemicals were obtained from Sigma-Aldrich. In the microbially driven Fenton
degradation experiments, anthracene and pyrene were added to the batch reactor at source zone concentrations of 1 μM and 10 μM, respectively.

Design of the microbially driven Fenton reaction for degradation of anthracene and pyrene

The toxicities of anthracene and pyrene on *S. oneidensis* metabolic activity were tested in LS medium by comparing growth rates of *S. oneidensis* batch cultures in the presence and absence of the anthracene (1 μM) and pyrene (10 μM) under aerobic growth conditions. The experimental system for the microbially driven Fenton reaction for degradation of anthracene and pyrene was similar to the batch reactor system previously employed for degradation of 1,4-dioxane (Sekar and DiChristina 2014). A minimum cycling time of 3 h was chosen for the alternating aerobic and anaerobic periods. Based on previous studies, the 3-h cycling period was sufficient to achieve the maximum rate and extent of H2O2 production compared to other cycling times of 45 min, 1.5 h and 6 h (Sekar and DiChristina 2014). Time periods for the alternating aerobic and anaerobic cycles were similar to those previously employed for degradation of 1,4-dioxane with longer anaerobic periods (6–24 h, 33–47 h and 50–70 h) to ensure that Fe(III) was completely reduced prior to switching to aerobic conditions (Sekar and DiChristina 2014).

Cell densities of 10^9 cells per mL have been employed to degrade contaminants via the microbially driven Fenton reaction (Sekar and DiChristina 2014). This cell density was selected in anticipation of applying the microbially driven Fenton reaction to contaminant degradation processes carried out in situ reactors. Anaerobic stock solutions of anthracene and pyrene were added to 10^9 cells mL^−1 in 60-mL glass serum bottles. Compressed nitrogen and air were sparged at 1 L/min gas flow rate. CO2 was not scrubbed during the experiment and the pH of the medium was stable at 7.0 ± 0.2 throughout the duration of the incubations (data not shown). The cell cultures were incubated under anaerobic conditions by injecting (hydrated) compressed nitrogen until 10 mM Fe(III) was reduced to 6.8–7.7 mM Fe(II) (3 h of anaerobic incubation; Fe(II) generating phase; Fig. 2). A (hydrated) compressed air line replaced the compressed nitrogen to initiate aerobic conditions and 6.8–7.7 mM Fe(II) was oxidized to 1.6–3.0 mM Fe(III) (3 h of aerobic incubation; HO• radical production phase; Fig. 2). HO• radicals were generated under aerobic conditions by the chemical reaction between the products of microbial Fe(III) reduction (Fe(II)) and microbial aerobic respiration (H2O2). Anthracene and pyrene concentrations were monitored throughout the experiments via high-pressure liquid chromatography (HPLC; see below). The anaerobic and aerobic phases were alternated four additional times following the first aerobic phase during an overall 73-h reaction period similar to the batch reactor system previously employed for degradation of 1,4-dioxane (Sekar and DiChristina 2014). Three sets of control incubations were carried out to confirm that anthracene and pyrene were degraded by HO• radicals generated by the *S. oneidensis*-driven Fenton reaction. The three control incubations were carried out in the batch reactor system described above with the following changes: In the first set of control incubations, anthracene and pyrene degradation were monitored in the absence of either Fe(III) or *S. oneidensis* cells (abiotic control). In the second set of control incubations, anthracene and pyrene concentrations were monitored in abiotic serum bottles maintained under strict anaerobic conditions with compressed air sparging for the entire 73-h reaction period. In the third set of control incubations, anthracene and pyrene concentrations were monitored in serum bottles maintained under strict aerobic conditions with compressed air sparging for the entire 73-h reaction period. Anthracene and pyrene concentrations were monitored throughout the experiments.

Analytical techniques

Samples were withdrawn and centrifuged at 6000 g for 10 min. HCl-extracted Fe(II) concentrations were determined with a previously described Ferrozine-based detection technique (Stookey 1970; Sorensen 1982). H2O2 concentrations were determined using a previously described spectrophotometric assay under similar conditions (Klassen, Marchington and McGowan 1994). H2O2 concentrations were monitored under (i) anthracene/pyrene degradation conditions with Fe(III) omitted and aerobic/anaerobic cycling periods of 3 h, and (ii) abiotic Fe(II) oxidation experiments in which 10 mM microbially produced Fe(II) (obtained by microbial Fe(III) reduction) was subjected to strictly aerobic conditions for 73 h.

To determine concentrations of anthracene and pyrene by HPLC, 1 mL of reactor contents was withdrawn and mixed with 700 μL of dichloromethane for 2 min. The mixture was centrifuged at 6000 g for 10 min and the dichloromethane fraction was directly injected for analysis. Anthracene and pyrene were analyzed by HPLC (Waters 1525 binary pump system) with UV detection at 254 nm (Waters 2487 System) following separation using a Supelcosil LC-18 column (Supelco) with 80% aqueous acetonitrile as the mobile phase and a constant flow rate of 1.0 mL/min. Chromatograms were generated for anthracene and pyrene at retention times of 4.7 and 5.9 min, respectively. Calibration curves were generated from standards to determine the concentrations of each compound (Titato and Lancas 2006). The limits of detection for anthracene and pyrene were 0.02 μM and 0.23 μM, respectively, while the limits of quantitation of anthracene and pyrene were 0.06 μM and 0.69 μM, respectively.

Statistical analysis

For determination of concentrations of Fe^{2+}, H2O2, anthracene and pyrene, triplicate samples were taken at each time point and values reported as the mean with standard deviation. The statistically significant differences between the means were calculated using Student’s t-test with P < 0.05.

RESULTS AND DISCUSSION

Microbially driven Fenton reaction for degradation of anthracene in liquid batch cultures

To test for pyrene and anthracene toxicity, *Shewanella oneidensis* was grown aerobically in LS growth medium supplemented with source zone concentrations of anthracene (1 μM) or pyrene (10 μM) (Reddy et al. 2012). Aerobic growth rates were not affected by the presence of either pyrene or anthracene, an indication that neither compound was toxic to *S. oneidensis* at source zone concentrations (Fig. 1). (Statistically significant differences were not found between treatments; P > 0.05.) Similar to previous findings (Sekar and DiChristina 2014), the results of cell viability experiments with anthracene and pyrene indicated that *S. oneidensis* cell concentrations were stable during the substrate switches between aerobic and anaerobic conditions (data not shown).
To initiate $\cdot OH$ radical production by the *S. oneidensis*-driven Fenton reaction, *S. oneidensis* cultures were incubated under anaerobic conditions for 3 h, during which the pool of 10 mM Fe(III) was microbially reduced at a rate of 2.3–2.6 mM h$^{-1}$, and Fe(II) concentrations increased to 6.8–7.7 mM (Fe(II)-generating phase; grey-shaded area in Fig. 2). At the 3-h time point, compressed air was injected for the next 3 h into all incubations, Fe(II) was air-oxidized at rates of 1.2–2.0 mM h$^{-1}$, and Fe(II) concentrations decreased from 6.8–7.7 mM to 1.6–3.1 mM (H$_2$O$_2$-generating phase; unshaded area in Fig. 2). At the end of the 3-h aerobic phase, we believe that our reaction system does not completely become anaerobic. Residual O$_2$ remaining in the system may still be microbially converted to H$_2$O$_2$ to react with Fe(II) and produce hydroxyl radicals that degrade anthracene and pyrene during the anaerobic phase. During the next four alternating anaerobic and aerobic phases, *S. oneidensis* reduced Fe(III) to approximately 7.7–8.9 mM Fe(II), while O$_2$ oxidized the produced Fe(II) to approximately 1.3–4.2 mM levels (Fig. 2). In control experiments with five alternating aerobic and anaerobic phases, *S. oneidensis* produced H$_2$O$_2$ to approximately 25 μM during the initial 3-h aerobic phase, and H$_2$O$_2$ subsequently oscillated between 20 and 25 μM levels throughout the remaining 73-h time period (Fig. 3). During the initial 3-h aerobic period (H$_2$O$_2$-generating phase; unshaded area in Fig. 4), anthracene was degraded from 1.0 μM to 0.41 μM at an initial rate of 0.2 μM h$^{-1}$ (Fig. 4). During the ensuing 18-h anaerobic period (Fe(II)-generating phase; grey-shaded area in Fig. 4), anthracene was degraded from 0.41 to 0.08 μM (0.02 μM h$^{-1}$). During the second 3-h aerobic period (24-h time point; Fig. 4), anthracene was...
Values represent means of triplicate samples; error bars represent one standard deviation.

degraded to levels below detection limits (0.02 μM) and remained below detection levels throughout the remainder of the 73-h incubation.

Microbially driven Fenton reaction for degradation of pyrene in liquid batch cultures

Nearly identical patterns of microbial (S. oneidensis-catalyzed) Fe(III) reduction, chemical (O2-catalyzed) Fe(II) oxidation and H2O2 production were observed in analogous pyrene degradation experiments (Figs 2 and 3). During the initial 3-h aerobic period (H2O2-generating phase; unshaded area in Fig. 5), pyrene was degraded from 9.0 μM to 6.5 μM (at an initial rate of 0.82 μM h⁻¹; Fig. 5). During the ensuing 18-h anaerobic period (Fe(II)-generating phase; grey-shaded area in Fig. 5), pyrene was degraded from 6.5 to 3.9 μM (0.15 μM h⁻¹). During the second and third 3-h degradation periods (24-h and 30-h time points respectively; Fig. 5), pyrene was degraded at rates of 0.32 and 0.27 μM h⁻¹, respectively. Pyrene concentrations remained constant at 1.4 μM throughout the remainder of the 73-h incubation (Fig. 5).

Anthracene and pyrene concentrations remained constant at 1.0 and 10.0 μM, respectively, in the first set of control incubations lacking Fe(III) or S. oneidensis cells (abiotic control; Figs 4 and 5) that also included five successive alternating anaerobic and aerobic cycles (statistically significant differences were found between Fenton reaction and control incubations; P < 0.05). In the second and third set of control incubations held under strict anaerobic and aerobic conditions respectively for 73h, anthracene and pyrene concentrations remained constant at 1.0 and 10.0 μM, respectively (Figs 6 and 7). The absence of anthracene and pyrene degradation under strict aerobic or strict anaerobic Fe(III)-reducing conditions indicated that the contaminants were not degraded due to aerobic or anaerobic enzymatic degradation reactions catalyzed by S. oneidensis, or due to H2O2-catalyzed Fe(III) reduction and subsequent reaction of the produced Fe(II) with H2O2 (as in the conventional Fenton reaction) thus implicating HO⁺ radicals (formed by reaction of microbially produced Fe(II) and H2O2) as the major reagent of the 1,4-dioxane degradation process.

The anthracene and pyrene amendments did not affect S. oneidensis metabolic activity as the rates of microbial Fe(III) reduction and microbial aerobic respiration in the presence of anthracene and pyrene were identical to those rates measured in the absence of both contaminants (Fig. 2). (Statistically significant differences were not found between treatments; P > 0.05.)

The Environmental Protection Agency (EPA) has set the standard limit for anthracene and pyrene in the environment at 10⁻⁴ and 2 × 10⁻⁴ mg/L, respectively (Gehle 2009). The microbial Fe(III) reduction rates measured in the presence and absence of anthracene or pyrene are nearly identical (Fig. 2). Thus, the concentrations of anthracene (1 μM or 0.2 mg/L) and pyrene (10 μM or 2 mg/L) degraded in the present study indicate that concentrations 3- to 4-orders of magnitude higher than the EPA limits did not affect S. oneidensis metabolic activity. In addition, the predicted degradation products for anthracene are anthraquinone compounds (Gan et al. 2013) including palmitic acid and hexadecane (Choi et al. 2014), respectively. Although analyses for anthraquinone compounds were not carried out in the present study, neither of the predicted intermediates appear to affect S. oneidensis metabolic activity (Fig. 2).
Potential pathways for microbiologically driven Fenton degradation of recalcitrant oil spill components anthracene and pyrene in contaminated marine and freshwater environments

Degradation of oil spill components such as anthracene and pyrene by HO• radicals may occur naturally at the sediment-water interface in contaminated marine and freshwater environments via the oxidation of Fe(II) by dissolved oxygen (Murphy et al. 2014, 2016). Unlike the chemical Fenton reaction, addition of exogenous H2O2 is not required for the microbially driven Fenton reaction to degrade anthracene and pyrene. The chemical Fenton reaction also requires re-reduction of Fe(III) produced during H2O2-catalyzed Fe(II) oxidation reactions. Fe(III) re-reduction processes such as those catalyzed by UV irradiation are possible during ex situ contaminant degradation processes, yet UV light penetration represents a formidable obstacle for in situ oil spill remediation technologies.

In the microbially driven Fenton reaction, S. oneidensis respiratory processes catalyze both H2O2 production and Fe(II) re-reduction. Since microbial Fe(III) reduction has been detected in a variety of environments, including anaerobic marine and freshwater environments, the microbially driven Fenton reaction may be induced by exposing Fe(III)-reducing facultative anaerobes in Fe(III)-containing contaminated environments to alternating aerobic and anaerobic conditions (via alternating injections of compressed air and nitrogen). Alternately, the microbially driven Fenton reaction may be stimulated by installing reactive iron barriers in the flow path of contaminated sediment pore waters and exposing Fe(III)-reducing bacteria attached to the iron barriers to alternating aerobic and anaerobic conditions. The microbially driven Fenton reaction may be especially useful for degradation of anthracene and pyrene, which are highly recalcitrant to microbial (enzymatic) degradation pathways and thus accumulate in oil spill-contaminated sediments (Ghosal et al. 2016; Bagby et al. 2017). The microbially driven Fenton reaction thus provides a foundation for development of more effective in situ and ex situ remediation technologies for degradation of anthracene, pyrene and other recalcitrant oil spill components in contaminated marine and freshwater environments.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSLE online.

FUNDING

This work was supported by the National Science Foundation.

Conflicts of interest. None declared.

REFERENCES

Lin Q, Mendelssohn IA. Impacts and recovery of the Deepwater Horizon oil spill on vegetation structure and function of
Son HS, Im JK, Zoh KD. A Fenton-like degradation mechanism for 1,4-dioxane using zero-valent iron (Fe0) and UV light. Water Res 2009;43:1457–63.